If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-2450=0
a = 2; b = 1; c = -2450;
Δ = b2-4ac
Δ = 12-4·2·(-2450)
Δ = 19601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{19601}}{2*2}=\frac{-1-\sqrt{19601}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{19601}}{2*2}=\frac{-1+\sqrt{19601}}{4} $
| 33-x=1ส่วน2 | | 2=(-3s+1-5) | | 34(17x+73)=577x | | -1.5=n | | x+18=-2x+36 | | 3/x-1=4/1-2x | | (12-x)×3+13+16=50 | | x-3=4x-33 | | 2x-10=5x-25 | | |x-4|-10=1 | | -3x+17=-5x+31 | | 42=7x+14 | | -25=-25x | | 12=q+0.666666667 | | 6x=10/8+4x | | 3/4x=3x+1 | | X^2+11x-1425=0 | | 3x²+15x-95=0 | | 3x/8-3=6 | | 124=32y | | 2/5x-2=11 | | 5(7x+61)=31(x+32) | | -99=36+47x+35-46x-71 | | 69+6(16x47)=97x | | -4/x=-16 | | -126x-94=788 | | -133=33(16-4y) | | 413x-233=122x-249 | | -3x=63= | | -12x^2+10x=0 | | 8z^2-12z+360=0 | | 2/2k-1=4/k |